Turing Machine Development Environment

Daniel Guetta
Mentor: Bobi Gilburd
Faculty of Computer Science
The Turing Machine is a simple computing model equivalent to today’s computers.

It can show us what computers can do and what they can’t do – in other words, whether a task is computable or not.
Computability

\[f(x) = x + 1 \text{ is computable} \]

Deciding whether a program will ever halt is not computable
What is a Turing Machine?

Read/write head

A B A 1 0 # G D N A B 0 1 1 ...

Semi finite tape
How do you tell a Turing Machine what to do?

Each Turing Machine has a set of states.

If Machine is in state \(x \) and is reading character \(a \), change to state \(y \), change the character to \(b \) and move left, right or not at all.
A simple example – addition

<table>
<thead>
<tr>
<th>State (q)</th>
<th>Transition</th>
<th>State (q)</th>
<th>Transition</th>
<th>State (q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₁</td>
<td>q₁, 1, R</td>
<td>q₁, 1, R</td>
<td>q₂, _, L</td>
<td></td>
</tr>
<tr>
<td>q₂</td>
<td>q₃, _, L</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>q₃</td>
<td>FINAL STATE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 + 3 = 8
The basic Turing Machine model presented so far can have several variations.

A particularly interesting variation of the Turing Machine is one that has multiple tapes.
Multitape Turing Machines

1 1 1 1 1 + 1 1 1

1 1 1 1 1 + 1 1 1

=

1 1 1 1 1 + 1 1 1
Equivalence of the Multitape Model
Aims of program – improvement over existing work

- To perform the following conversions:

<table>
<thead>
<tr>
<th>STATE</th>
<th>TRUTH TABLES</th>
<th>PSEUDOCODE</th>
<th>INSTRUCTIONS</th>
<th>STATE DIAGRAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₁</td>
<td>1, r, 1, R</td>
<td>q₁, 1, R</td>
<td>If in q₁ reading 1, write 1, move right goto q₁.</td>
<td>MULTITAPE MACHINES</td>
</tr>
<tr>
<td>q₂</td>
<td>_, L</td>
<td>_, L</td>
<td>If in q₂ reading 1, write _, move left, goto q₃.</td>
<td>MULTITAPE SIMULATED</td>
</tr>
<tr>
<td>q₃</td>
<td>FINAL STATE</td>
<td></td>
<td></td>
<td>ON SINGLE TAPE</td>
</tr>
</tbody>
</table>
Aims of program – improvement over existing work – continued

- To simulate Turing Machines in a graphical environment
- The ability to save machines and re-open them later
- To divide the program into parts that can then be used independently in other programs.
- The ability to view, edit and/or simulate several machines at the same time, for comparison.
Demonstration of the program

You will now see a short video of a user using the program to create machines
Future work

- Implement the theory set out for the pseudo code → Turing Machine conversion
- Support different Turing Machine variations (doubly infinite, multi-track, etc…)
- Include finite state automatons in the program
Acknowledgements

- My mentor, Bobi Gilburd
- Technion’s computer science faculty
- My father and Stanislav Tsanev
- The British Technion Society
- Everyone that made SciTech 2003 such an amazing, incredible experience