OLYMPUS

8.276 Final Poster — Daniel Guetta — guetta@cantab.net

Theory

- In theory, if we know everything about the proton, we should be able to obtain an analytic expression for the form factors.
- Advances in lattice QCD techniques are getting us closer and closer to this goal, and results are expected in the foreseeable future...
- In the meantime, however, theories can’t help much.

Polarised Scattering

- The factors G_E and G_M can also be determined by performing scattering experiments using polarised particles.
- For example when polarised electrons are scattered off unpolarised protons, polarisation transfer occurs to the proton with two components — parallel (P) and perpendicular ($P')$ to the proton momentum in the scattering plane. In fact:

$$G_E = \frac{P}{P'} \frac{(E + E')}{(E - E') \tan \frac{q}{2}}$$

- Similarly, carrying out $e^- p$ scattering with spins aligned and anti-aligned and measuring the difference in cross sections (the scattering asymmetry) allows us to determine the form factors.

- A crucial aspect of these experiments is that they only occur when a single photon is transferred in the interaction.

Results

Current data indicates that both electric and magnetic form factors have the same dipole distributions. $G_E/G_M = \frac{G_E}{G_M} = 1$.

Such form factors indicate that charge is concentrated in the centre of the proton, and decreases exponentially.

Practical Details

- Measurements of this kind have already been made, but at low energy (~500 MeV) and with poor precision. The aim of OLYMPUS is to make measurements in the 2 GeV range with 1% precision.

- Getting the Particles -
 The experiment will use the DORIS storage ring at DESY in Hamburg, Germany. Because (1) it can be used to store both e^- and e^+ at high energies and (2) the beams can be switched from e^- to e^+ in under an hour. The experiment would involve installing an unpolarised hydrogen gas target at the storage ring.

- Detecting the Particles -
 The experiment will use the BLAST (Bates Large Angle Scattering) detector from the MIT-Bates accelerator. It is optimally designed for 1-2 GeV elastic ep scattering because of its toroidal shape (the beam can be located in the centre of the detector) and its drift chambers. Only problem—it’s over 3700 miles away!

Many thanks to Prof. R. Milner for the help and support so kindly and willingly provided in helping me prepare this poster, and to Prof. J. Conrad and E. Stakianakis for their help throughout 8.276.

Experiments

- A crucial assumption in deriving the Rosenbluth formula was that the Born approximation applied (i.e. only one photon was involved in the interaction).
- Polarisation transfer only occurs in one-photon processes, and does not rely on this approximation.
- The idea is that the cross-section measurements are polluted by second-order interactions. These render the resulting form-factors meaningless, because the entire (already doubtful) interpretation of these measurements as Fourier transforms of the charge distribution relies heavily on the assumptions that only single-photon processes are involved.